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ABSTRACT 

Design data are given in the form of curves of the normalized parameters for the exact 

design of uniformly dissipative, doubly terminated bandpass and lowpass filters with 

Butterworth, Chebyshev, or Bessel transfer functions having two, three, four, or five 

poles. For the Chebyshev filters, pass-band ripples of 0.001, 0.01, 0.03, 0.10, 

0.30, and l.OdB are included. Curves are also given for gain, phase, group delay, 

and transient response, most of which are not readily available elsewhere. 

A complete theoretical development of the design is given, and the solution for the 

five-pole case is apparently new. Multiple solutions for the design parameters are 

discussed in the light of modern network synthesis, and the correspondence between 

the two is established. 
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THEORY AND DESIGN DATA FOR UNIFORMLY DISSIPATIVE, 
DOUBLY TERMINATED BANDPASS AND LOWPASS FILTERS 

I.    INTRODUCTION 

In the design of frequency selective filters,   it is often necessary to take into account the 

parasitic dissipation of the reactive components which will be used to realize the filter.    In this 

report,   we present design parameters for filters having Butterworth,  Chebyshev,   and Bessel 

transfer functions for a specific,  but quite useful,   distribution of parasitic dissipation.    The 

particular case considered is that in which all circuit elements are assumed to have the same 

value of unloaded Q  (such a circuit is said to be uniformly lossy).    The resulting designs are 

most useful for the design of narrow bandpass filters realized as a cascade of coupled resonant 

circuits;  here the uniformly lossy assumption reduces to that of equal Q for each of the coupled 

resonant circuits.    However,   the design parameters apply equally well to the realization of low- 

pass and wide bandpass filters.    In all cases the design is based on a normalized,   equivalent, 

lowpass filter. 

For each of the filter characteristics,   design parameters are given for filters having two 

through five poles.    In the case of Chebyshev filters,  pass-band ripples of 0.001,   0.01,  0.03, 

0.10,  0.30,  and 1.0 dB are included. 

In addition to the design data,  normalized gain curves are given from which one can calculate 

the magnitude of the transfer function of each filter at the center frequency.    Useful characteris- 

tics of the normalized,   lowpass filters are also presented,   including plots of unit impulse and 

unit step response and attenuation,  phase,  and group delay.    From the impulse and step responses, 

the envelope of the corresponding responses of a narrow bandpass filter can be determined. 

The data available previously for the design of bandpass or lowpass filters fall into two 

categories: 

(a) Lossless design with resistive source and load or with a resistive 
termination at one end only,   and 

(b) Uniformly lossy design with a resistive termination at one end only. 

Such data can be found in Refs. 1 through 11.    To the author's knowledge,  these are the first pub- 

lished data for the design of dissipative filters with resistive source and load. 

The remainder of this report is organized as follows.    In Sec. II,  the normalizations used 

for the Butterworth,  Chebyshev,   and Bessel lowpass transfer functions are outlined,   and the 

frequency and time responses mentioned above are presented graphically.    Section III is a guide 

to the design data and their application.    Design parameters are defined and related to the circuit 

element values for specific filter realizations.    Frequency transformations that convert a band- 

pass or a lowpass filter into an equivalent normalized lowpass filter and gain normalizations 



are discussed.    Use of the design data to realize a specific filter is illustrated by means of an 

example.    The design data are presented in Sec. IV. 

In Appendix A filter alignment techniques are discussed,   and in Appendix B the various 

circuits used to realize the filters are analyzed and their transfer functions are derived.    A few 

intermediate results are believed to be new, although the final results are not.   The design param- 

eters arise naturally in the course of the work. 
Appendix C presents solutions for the design parameters in terms of the denominator poly- 

nomial coefficients of the desired transfer function.    The methods used to solve the design prob- 
12 13 lern are those of Dishal      and Wagner,     but the solution for a five-pole transfer function appar- 

ently is new.    These solutions are the basis for the design curves presented in this report and 

can also be used for the design of filters with other transfer functions.    To realize a given trans- 

fer function,  it is possible to have more than one set of values of the design parameters.    An 
alternate viewpoint for these multiple solutions is obtained from modern network synthesis,   and 

some previously unobserved solutions for Bessel transfer functions are pointed out. 

Numerous checks of the data given here against those in Refs. 1, 2,   and 5 have been made, 

and no disagreement has been found.    This checks,   of course,   only those areas in which there 

is overlap between the data presented here and those given in the references.    As further verifica- 
tion,   the data were spot-checked at many points to see that the required transfer function re- 
sulted.    Also,   many filters have been designed successfully using these data. 



n.    NORMALIZED TRANSFER FUNCTIONS 

In this section we define the normalized, lowpass Butterworth,  Chebyshev, and Bessel 

transfer functions that are the basis of the design data, and we explain the bandwidth factor w 

which is used in the transformation of the actual frequency u) - Zirf to the normalized frequency 
ß.    For the convenience of the designer,  curves of attenuation, phase, and group delay as well 

as unit impulse and unit step response are given for these transfer functions. 

A.    TRANSFER FUNCTIONS 

As is conventional for Butterworth filters,  the lowpass transfer function has a half-power 

frequency of 1 rad/sec,  and the squared magnitude of the transfer function is 

|tBU(ifl)| 
i + n Zn (2-1) 

The parameter n,   the number of poles,  specifies a particular Butterworth transfer function 
which we will designate by the notation BU n.    Thus,  BU 4 refers to a four-pole Butterworth 
transfer function.    This notation is an adaptation of that used by Saal    for Cauer parameter 
filters.    The transfer function is 

1 
tBU(X) " Qn(X) (2-2) 

where Q (X) = X    + q^^X11"    +..•'+ q^X + q_,  and q_ ■ 1 for this case.    The zeros and coefficients 
of Q^(X) are given in Tables I and II. 

For Chebyshev characteristics the lowpass transfer function has equal-ripple behavior out 
to 1 rad/sec,  and the squared magnitude of its transfer function is 

lwun)|2 = XH 1 + €2 Tn
2(fi) 

(2-3) 

Here T  (J2) is the Chebyshev polynomial of the first kind of degree n 

I a\4 i 
TnW =   I 

cos(n cos"    fi) 

I cosh(n cosh"    fi) 

(2-4) 

|n| >i 

TABLE I 

POLES OF BUTTERWORTH TRANSFER FUNCTION [Zeros of Q (X)] 

n = 2 n = 3 n = 4 n = 5 

-0.70711 ±i 0.70711 -1.00000 

-0.50000 ±i 0.86603 

-0.92388 ±i 0.38268 

-0.38268 ±i 0.92388 

-1.00000 

-0.80902 ±i 0.58779 

-0.30902 ±i 0.95106 



TABLE II 

COEFFICIENTS OF Qn(X) FOR A BUTTERWORTH 
TRANSFER FUNCTION 

Q  (X)=Xn + q    .X""1 +...+ q.X + 1 
rT '               TV-1                      nl 

n ql q2 % *4 

2 1.414214 

3 2.000000 2.000000 

4 2.613126 3.414214 2.613126 

5 3.236068 5.236068 5.236068 3.236068 

and the peak-to-peak ripple y in decibels is 

y = 10 log(l + e2)      . (2-5) 

A particular Chebyshev transfer function is specified by two parameters n and y (or e), and will 

be designated by the notation CH n — y. Thus, CH 5 — 0.03 refers to a five-pole Chebyshev trans- 

fer function whose ripple is 0.03 dB.    A Chebyshev transfer function is 

tCH(X) = 
tZ11'1 Q^X) 

(2-6) 

The zeros of Q_(X) and its coefficients are given in Tables III through V. 

Bessel filters are characterized by having a group delay that approximates 1 second in a 

maximally flat sense.    The transfer function is 

t      IX) - (2n)!   —i- -  _i0- 
BE(   ] " 2nn!    VX> "  Si<X> 

(2-7) 

where y (\) = X w (l/X) and w (x) is a Bessel polynomial.    The zeros and coefficients of this 

O (X) are given in Tables VI and VII.    The transfer function is thus completely specified by the 

parameter n;  both the bandwidth and the band over which the time delay is substantially constant 

increases with n.    We will designate a particular characteristic by the notation BE n.    Thus, 

BE 3 refers to a three-pole Bessel transfer function. 

For a full discussion of the characteristics of these three transfer functions see Chap. 11 of 

Weinberg's book   and the references cited there. 

B.    BANDWIDTH 

Assume that a bandpass filter is required to have a bandwidth Wfl = 27rBa rad/sec between 

the points at which the transmission is a a dB below its peak value.    If the reference lowpass 

transfer function is a dB below its peak value at a frequency of ß    rad/sec, then 

w = 27Tb = Wo//3a = 2«Ba/ßa (2-8) 



TABLE  III 

POLES OF CHEBYSHEV TRANSFER FUNCTION [Zeros of Q (X)] 
n 

y 
(dB) n=2 n = 3 n = 4 n = i n = ( 5 

0.001 -1.22315 ±12.28873 -0.59185 ±i 1.70152 -0.35194 ± 1.44144 -0.23457 ± 1.30361 

-2.44630 -1.42885 ±i 0.70479 -0.92139 ± 

-1.13890 

0.89086 -0.64086 ± 

-0.87543 ± 

0.95431 

0.34930 

0.01 -2.22777 ±i 2.33729 -0.79469 ±i 1.62622 -0.41087 ±i 1.35553 -0.25251 ± 1.22820 -0.17147 ± 1.15867 

-1.58937 -0.99192 ±i 0.56148 -0.66109 ± 

-0.81715 

0.75907 -0.46845 ± 

-0.63992 ± 

0.84820 

0.31046 

0.03 -1.66227 ±i 1.80642 -0.63517 ±i 1.40011 -0.33740 ±i 1.23169 -0.21011 ± 1.15007 -0.14372 ± 1.10486 

-1.27034 -0.81455 ±i 0.51018 -0.55007 ± 

-0.67992 

0.71078 -0.39265 ± 

-0.53638 ± 

0.80881 

0.29605 

0.10 — 1.18618 ± " 1.38095 -0.48470 ±i 1.20616 -0.26416 ±i 1.12261 -0.16653 ± 1.08037 -0.11469 ± 1.05652 

-0.96941 -0.63773 ±i 0.46500 -0.43599 ± 

-0.53891 

0.66771 -0.31335 ± 

-0.42804 ± 

0.77343 

0.28309 

0.30 -0.84716 ±" 1.10348 -0.36464 ±i 1.07186 -0.20260 ±i 1.04536 -0.12890 ± 1.03048 -0.08922 ± 1.02171 

-0.72928 -0.48912 ±i 0.43300 -0.33746 ± 

-0.41713 

0.63687 -0.24376 ± 

-0.33298 ± 

0.74794 

0.27377 

1.0 -0.54887 ± 0.89513 -0.24709 ±i 0.96600 -0.13954 ±i 0.98338 -0.08946 ± 0.99011 -0.06218 ± 0.99341 

-0.49417 -0.33687 ±i 0.40733 -0.23421 ± 

-0.28949 

0.61192 -0.16988 ± 

-0.23206 ± 

0.72723 

0.26618 



TABLE IV 

NUMERICAL COEFFICIENTS OF Q (X) FOR A CHEBYSHEV TRANSFER FUNCTION 
n 

Qn(X)=Xn + VlXn-1
+...+ qiX + q0 

Y 
(dB) n 

qo ql q2 q3 q4 

0.001 3 

4 

5 

16.474307 

8.238102 

4.118577 

12.718804 

12.279242 

9.553635 

4.892607 

9.166493 

11.068605 

4.041409 

8.041646 3.685552 

0.01 2 

3 

4 

5 

10.425865 

5.206934 

2.606466 

1.301734 

4.455534 

5.802197 

5.047686 

3.709816 

3.178741 

4.935622 

5.248800 

2.805574 

4.746274 2.644343 

0.03 2 

3 

4 

5 

6.026308 

3.002764 

1.506577 

0.750691 

3.324547 

3.977509 

3.280243 

2.357258 

2.540673 

3.653977 

3.635990 

2.303900 

3.670604 2.200275 

0.10 2 

3 

4 

5 

3.314036 

1.638050 

0.828509 

0.409513 

2.372356 

2.629494 

2.025500 

1.435558 

1.938811 

2.626798 

2.396959 

1.803772 

2.770704 1.743963 

0.30 2 

3 

4 

5 

1.935344 

0.934821 

0.483836 

0.233705 

1.694311 

1.813691 

1.282057 

0.919769 

1.458555 

1.956934 

1.600987 

1.383426 

2.161058 1.349858 

1.0 2 

3 

4 

5 

1.102510 

0.491307 

0.275628 

0.1228267 

1.097734 

1.238409 

0.742619 

0.580534 

0.988341 

1.453925 

0.974396 

0.952811 

1.688816 0.936820 



TABLE V 

EXPLICIT COEFFICIENTS OF Q (X) FOR A CHEBYSHEV TRANSFER FUNCTION 
n 

Qn(X)=Xn + qn_1X
n_1

+...+ q1X+q0 

n Coefficients 

2 
2 

qQ= 1/2 +sinh   $      ,      q   = \/2~sinh <p 

3 

4 

«0 = < 

"0=' 

q2=' 

o 
3/4 + sinh   <j>) sinh <{>      ,      q] = 3/4 + 2 sinh 4»      ,      q2 = 2 sinh <p 

/8 + sinh   <|> + sinh   <|>      ,      q   = 72(2 + y/l) (1 + sinh   <|>) sinh «}> 
1                             V       2v/2                  ' 

+ (2 + v/2) sinh   <|>     ,     q3 = V2(2 + \/2) sinh <f> 

5 
4                     2 

qQ = (sinh   $ + 5/4 sinh   $ + 5/16) sinh <J> 

q   = (1 + v/5) sinh4 * + (LUb^I) sjnh
2 ^ + 5/16 

q2 = (3 + v/5) sinh3 <|> + (5 + *^) sinh <J> 

q3 = (3 + v/5) sinh2 f + 5/4 

q   = (1 + \/5)sinh <}> 

where 

<t> = 1/n sinh"1 1/c = 1/n corh"1 (lO^20) 

and 

y=10log (1 + e2)      . 

A general and simpler expression for q~ is 

V 
l/e2n"1                   ,      n odd 

/ A   2/ 0n-l Vl + e /e2             ,      n even 



TABLE VI 

POLES OF BESSEL TRANSFER FUNCTION [Zeros of Q (X)] n 

n = 2 n = 3 n = 4 n = 5 

-1.50000 ±10.86603 -2.32219 

-1.83891 ±i 1.75438 

-2.89621 ±i 0.86723 

-2.10379 ±12.65742 

-3.64674 

-3.35196 ±i 1.74266 

-2.32467 ±i 3.57102 

TABLE VII 

COEFFICIENTS OF Qn(X) FOR A BESSEL 
TRANSFER FUNCTION 

QnW = Xn + VlXn'1+"-^lX^0 

n qo ql q2 % "4 

2 3 3 

3 15 15 6 

4 105 105 45 10 

5 945 945 420 105 15 

TABLE VIII 

HALF- POWER BANDWIDTH OF CHEBYSHEV TRANSFER FUNCTIONS, ß3 

ß« = cosh (- cosh     —) 
•9              n             i rod/sec 

Ripple, y 
(dB) n = 2 n=3 n = 4 n = 5 n = 6 

0.001 5.783493 2.642704 1.841670 1.515589 1.349575 

0.01 3.303619 1.877180 1.466905 1.291218 1.199412 

0.03 2.550594 1.615244 1.332403 1.208783 1.143513 

0.10 1.943219 1.388995 1.213099 1.134718 1.092931 

0.30 1.539364 1.229063 1.126802 1.080553 1.055714 

1.0 1.217626 1.094868 1.053002 1.033815 1.023442 



For a lowpass filter,   w is similarly defined.    Assume that a lowpass filter passes all fre- 

quencies out to W    = ZTTB    rad/sec and there has a transmission that is a dB below the peak 

value.    If the reference lowpass transfer function is a dB below its peak value at a frequency of 

ß    rad/sec, then Eq. (2-8) is the proper definition for w in the lowpass case also. 

Thus,  if a Butterworth filter is required to have a 3-dB bandwidth of W., rad/sec, then 

ß    B ß_ * i and w = W3 with the lowpass normalization used here.  If a Chebyshev filter is re- 

quired to have an equal-ripple bandwidth of W    rad/sec,  then ß    = ß    = 1 and w = W .    For 

Chebyshev filters another often used bandwidth specification is the 3-dB bandwidth;  for the 

calculation of w in this case,  ß^ for the Chebyshev characteristic is required.    It is given by 

03 = cosh (~ cosh"1 j)    . (2-9) 

In Table VIII, values of 03 are given for n = 2 through 6 and for y = 10 log(l + e  ) ■ 0.001,  0.01, 

0.03,   0.10,   0.30 and l.OdB. 

A Bessel filter (as normalized here) does not have a uniform bandwidth;  its bandwidth for 

a  up to 7.5 dB can be found on the expanded attenuation plot in Fig. 9. 

For bandwidth specifications other than those discussed above,  ß    can be found with little 

difficulty for Butterworth and Chebyshev filters by direct calculation using Eqs. (2-1) and (2-3). 

For Bessel filters one must resort to tables of spherical Bessel functions as discussed by 

Weinberg. 

C. FREQUENCY CHARACTERISTICS 

The attenuation A. (ft), phase <p. (J2), and group delay T. (fi) of Butterworth, Chebyshev, 

and Bessel transfer functions [Eqs. (2-2), (2-6), and (2-7), respectively] are given in Figs. 1 

through 23. 

D. TRANSIENT RESPONSES 

Figures 24 through 39 show the unit impulse response,  hT (t) = £       [t(X)l.  and the unit step 
-1     -1 -1 response,  g, (t) =  £     [X    t(\)],  of the various transfer functions where £     indicates the inverse 

Laplace transformation. 



Fig. 1.   Butterworth attenuation characteristics. 

Fig. 2.   Chebyshev attenuation characteristics        g 
for 0.001-dB ripple. 41 

10 



Fig. 3.   Chebyshev attenuation characteristics      ~_. 
for 0.01-dB ripple. 

Fig. 4.   Chebyshev attenuation characteristics 
for 0.03-dB ripple. 

11 



Fig. 5.   Chebyshev attenuation characteristics 
for 0.1 -dB ripple. 

Fig. 6.   Chebyshev attenuation characteristics     § 
for 0.3-dB ripple. ^ 

12 



a (rad/Mc) 

Fig. 7.   Chebyshev attenuation characteristics 
for 1.0-dB ripple. 
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A (rod/»«el 

Fig. 8.   Bessel attenuation characteristics. 
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Fig. 9.   Bessel attenuation characteristics for the pass band. 

Fig. 10.    Butterworth phase characteristics. 
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Fig. 11.    Two-pole Chebyshev phase 
characteristics. 

Fig. 12.    Three-pole Chebyshev phase 
characteristics. 
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Fig. 13.    Four-pole Chebyshev phase 
characteristics. 

Fig.  14.    Five-pole Chebyshev phase 
characteristics. 3, 
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Fig. 15.    Six-pole Chebyshev phase     3 
characteristics. ^ 

Fig. 16.   Bessel phase characteristics. 
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Fig. 17.   Butterworth group delay 
characteristics. 
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12 

Fig. 18.   Two-pole Chebyshev group delay    3  ,0 

characteristics. ^ 
0.8 

0.6 

0.4 

02 
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Fig. 19.   Three-pole Chebyshev group      ^ 
delay characteristics. 

I 
3 

-i 

Fig. 20.   Four-pole Chebyshev group 
delay characteristics. 
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Fig. 21.    Five-pole Chebyshev group 
delay characteristics. 

1 
Fig. 22.   Six-pole Chebyshev group      -. 
delay characteristics. j 
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Fig. 23.   Bessel group delay characteristics. 
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t  (MC) 

Fig. 24.   Impulse response of Butterworth filters. 
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Fig. 25. Impulse response of Chebyshev filters with 0.001-dB ripple. 
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Fig. 26. 
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Impulse response of Chebyshev filters with 0.01-dB ripple. 
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Fig. 27.   Impulse response of Chebyshev filters with 0.03-dB ripple. 

Fig. 28.    Impulse response of Chebyshev filters with 0.1-dB ripple. 
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-0.2 

Fig. 29.    Impulse response of Chebyshev filters with 0.3-dB ripple. 

Fig. 30.    Impulse response of Chebyshev filters with 1.0-dB ripple. 
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TT :""'»wiiiin!irrTiii 

Fig. 31.    Impulse response of Bessel filters. 

t (tec) 

Fig. 32.   Step response of Butterworth filters. 
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t(MC) 

Fig. 33.   Step response of Chebyshev filters with 0.001-dB ripple. 

1-62-48001 

t  (MC) 

Fig. 34.   Step response of Chebyshev filters with 0.01-dB ripple. 
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Fig. 35.   Step response of Chebyshev filters with 0.03-dB ripple. 

0 4 

Fig. 36.    Step response of Chebyshev filters with 0.1-dB ripple. 
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Fig. 37.   Step response of Chebyshev filters with 0.3-dB ripple. 

Fig. 38.   Step response of Chebyshev filters with 1.0-dB ripple. 
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Fig. 39.   Step response of Bessel filters. 
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m.    GUIDE TO DESIGN OF UNIFORMLY LOSSY FILTERS 

In this section we outline the design of narrow bandpass, lowpass,  and wide bandpass filter 

circuits based on the normalized design parameters.    For narrow bandpass filters,  three circuit 

configurations are considered, and for lowpass and wide bandpass filters one configuration for 

each is considered.    In all instances,  simple relationships between the circuit element values and 
the normalized design parameters are given. 

Normalized design parameters are the coupling coefficients between adjacent parts of the 

network (k.   ., A   the parasitic (or unloaded) dissipation factor of the uniformly lossy circuit 
J» J+1 

elements a,   and the loaded dissipation factors at the source and load ports of the filter (d and 

6,  respectively).    The information is presented in the following form:   families of curves of the 

k's and Ö as functions of d are given,  with a as the parameter of the families.    From this 
information and the desired bandwidth and center frequency, the actual circuit parameters can 
be determined.    Also given in the same format are curves of the normalized gain parameter r, 
from which the transfer function of a filter at its center frequency is determined.    Since T  gives 
the gain of bandpass filters at their center frequency and that of lowpass filters at zero frequency, 
this is also the peak value for Butterworth,  Bessel,  and odd-order Chebyshev filters.    For even- 

order Chebyshev filters, the gain at a valley in the pass band is obtained,  which must be multi- 
plied by *Vl + e   to obtain the maximum gain.    Values of »Vl + c    are given in Table IX. 

TABLE IX 

VALUES OF VARIOUS USEFUL FUNCTIONS OF c 

y €2=10r/io_1 e /l + .
2-10"*° 

0.001 0. 00023 028502 1.00011 51358 0.0151751448 

0.01 0.00230 52381 1.00115 19555 0.04801 2895 

0.03 0.00693 16689 1.00345 985 0.08325 6644 

0.10 0.02329 29923 1.01157 945 0.15262 042 

0.30 0.07151 93052 1.03514217 0.26743 094 

1.0 0.25892 54118 1.12201 845 0.50884 714 

The design is based on reducing the actual filter specifications to those of an equivalent 
lowpass filter of unity bandwidth.    This is accomplished by frequency transformations between 
the lowpass frequency fl and the actual frequency w that are discussed below.    By using these 

transformations the attenuation,  phase,  and delay of the actual filter can be found from the corre- 

sponding characteristics of the equivalent lowpass filter.    Likewise, transient responses of low- 
pass and narrow bandpass filters can be found from those of the equivalent lowpass filter. 

A.     NARROW BANDPASS FILTERS 

For narrow bandpass filters the normalizing factor   p is the ratio of bandwidth (w = Zirb 

rad/sec) to the center frequency (wfi = 27rfn rad/sec): 
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w      b 
<"^ = r0   ■ »-« 

The transformation between the actual frequency w  and the normalized frequency  fi is 

B-|{«-«0)-|{f-f0)      . (3-2) 

Thus,  the actual attenuation,  phase,  and delay are 

A(w)=AL(fl) (3-3) 

<p(u) = <PL(Sl) (3-4) 

T(w) = wTL(ß)      ' (3"5) 

The attenuation is usually needed to determine the complexity of the filter. 
Three different realizations of three-pole narrow bandpass filters are shown in Figs. 40-42, 

and the relationship between the design parameters and the circuit element values is given in 

each case.    In Fig. 40 the circuit has three reactively coupled,  parallel resonant circuits; in 

Fig. 41 the circuit has three reactively coupled, series resonant circuits; and in Fig. 42 the 

circuit is a combination of the previous two.    For filters with n poles,   n coupled resonant 

circuits must be used in the realization; the design parameters for an n-pole filter follow the 

pattern illustrated in the examples for three poles.    In all cases the self-admittance of each 

node and the self-impedance of each loop must be resonant at the center frequency,  but whether 

a coupling reactance is capacitive or inductive is up to the discretion of the designer. 

An important fact to observe about these circuits is that the self-admittance of any node is 

independent ofthat of the others, as is the self-impedance of the various loops.    Thus, the L's 

and C's can be chosen to be convenient values,  e.g., all L.'s in Fig. 40 or in Fig. 41 can be the 

same value.    In Fig. 42, the coupling coefficient k23 imposes a relation between L, and L,,  but 
otherwise in a circuit of this sort the L's are unrestricted. 

If a coupling reactance is inductive, the resulting ir or T of inductors can be converted 
into a transformer by the equivalent circuits and the equations relating their parameters as 
shown in Fig. 43.    For example,  if the IT of inductors (L2, L_, L,^) in Fig. 40 or the T inductors 

(L2, L3, L23) in Fig. 41 is converted into a transformer, the coupling coefficient K of that trans- 

former is equal to pk2o- 

The envelope of the response of a narrow band filter to a unit impulse or a suddenly applied 
unit amplitude sine wave of frequency fQ can be found in terms of hrU) and g, (t),   respectively. 
Papoulis (Ref. 14,  p. 124) has shown that if a narrow band transfer function is symmetric in 
amplitude about its center frequency,  then the envelope of its unit impulse response is equal to 
two times the unit impulse response of the equivalent lowpass filter.    The narrow band filters 
considered here have transfer functions whose behavior about the center frequency wQ is given 
by Eqs. (B-17),   (B-20),  and (B-28).    By applying Papoulis' result to these transfer functions it 

is found that the envelope of the unit impulse response of these filters is 
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for Butterworth, Bessel,  and odd-order Chebyshev filters, where 

F ■ 

JC^C 33 

J^ J33 

IJ^7 L33 

for Figs. 40,  41,  and 42,  respectively.   For even-order Chebyshev filters it is 

Similarly, the envelope of the response of a narrow band filter to a suddenly applied sine wave 

of frequency f   is 

for Butterworth, Bessel,  and odd-order Chebyshev filters.    For even-order Chebyshev filters 
it is 

hmMm3fJ**r?*L%t)     ' (3"9) 

B.    LOWPASS FILTERS 

For lowpass filters the normalizing factor for the data is just the bandwidth w = Zirb,  and 
the transformation between fl and ou  is 

Ü = w/w = f/b      . (3-10) 

Thus, the actual attenuation, phase,  and delay are 

A(W) = AL(0) (3-11) 

tfu) = ?L(0) (3-12) 

T(«) =4TL(fi)      ' {3"13) 

Three- and four-pole,  polynomial type lowpass filters are shown in Figs. 44 and 45,  re- 

spectively,  and the relationship between the design parameters and the circuit element values 
is given*    These examples illustrate the definitions of the normalized coupling coefficients and 

dissipation factors for lowpass filters with either an odd or an even number of poles.    Thus for 

•Ordinarily, the dissipation factor of inductors is somewhat greater than that of capacitors, so in order to have 
uniform dissipation, loss (in the form of shunt resistors) must be added to the capacitors.   In principle this is 
undesirable because of the additional transmission loss introduced.   However, by incorporating with the source 
resistance G$ that part of Gl not associated with the parasitic dissipation of C], the increase in transmission 
loss is minimized.   For n even this can be done at only one end of the network, but for n odd both ends of the 
network can be treated in this way.   Often capacitor losses are negligible, therefore the work of Geffe^ and 
Orchard^0 concerned with predistortion for singly loaded, lossy-L networks is of interest.    For doubly loaded 
networks with unequal but uniform dissipation in inductors and capacitors, the analytical work is considerably 
more difficult (see Desoer, 17 Ming, 18 ancj Belevitch, et aj J'), so that in a practical sense the small additional 
loss required by a design assuming uniform loss in all reactances is well worth the savings in computation.   This 
will no longer be true when a computer program is available for doing this more difficult design. 
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any value of n and for the dual circuits,  the expressions for the design parameters can be found 

easily from the pattern in these examples. 

Unit impulse and unit step responses of the actual lowpass filter are obtained easily from 

those of the normalized lowpass filter by applying the scaling theorem of Fourier integral theory 
14 (Papoulis,     p. 14).    This theorem states that if F(w) and f(t) are a Fourier transform pair,  then 

F(w/a) and | a|  f(at) are also.    Thus the unit impulse response of a lowpass filter of bandwidth 

w  is 

h(t) = 

I C.C 
N     1   n 

r 
IC.L. si    i   n 

hL(wt) 

hL(wt) 

IW1 + e' 

/C,L 
v    1   n 

hL(wt) 

for BU,  BE and CH with n odd. 

for BU and BE with n even. 

for CH with n even. (3-14) 

By integrating these expressions we obtain the unit step response of a lowpass filter. 

g(t) = 

r 
w IC.L 

si    1   n 

rJl + e2 

gL(wt) 

gL(wt) 

gL(wt) 

for BU,  BE and CH with n odd. 

for BU and BE with n even. 

for CH with n even. (3-15) 

Note that for  n odd the response is the output voltage,   and for  n even the response is the output 

current.    In any case the input is a current source. 

C.    WIDE  BANDPASS  FILTERS 

For wide bandpass filters the normalizing factor is the bandwidth w = 2?rb = co? — w . = 

2rr(f^ - f  ), when the pass band extends from w, = Ziri. to u>2 = 27rf_.    The transformation Detween 

ft  and u)  is 

w   \wn        U) / (3-16) 

where the center frequency u>Q = 27rf_ is the geometric mean of w. and CJ2:   u>0 =   /w .w,.    The 

actual attenuation, phase, and delay are 

A(w) = AL(B) 

(p{w) = <PL(J2) 

= i(1 + ^Vj 

(3-17) 

(3-18) 

(3-19) 
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A wide bandpass filter of bandwidth w is derived from the equivalent lowpass filter of band- 
width w.    The lowpass circuit is modified as follows.    In series with each inductance of L. 

2 1 

henrys place a capacitance of 1/COQL. farads,  and in parallel with each capacitance of C. farads 
place an inductance of l/wQC. henrys.    The resulting L-C pairs are resonant at u>  .    In theory 

the added reactances must be lossless,  but in practice loss in all reactances can be tolerated. 

If the normalized dissipation factors of the resonant circuits are equal and are smaller than 

1/5 a (a is the largest value of a in a particular set of curves),  the resulting pass-band 

distortion is negligible for most applications.     The design is summarized in Fig. 46. 

In general,  the transient response of a wide bandpass filter cannot be related to hy (t) or 

gL(t),  so each transient must be handled individually. 

D.    SUMMARY 

To close the discussion it is worthwhile to outline a general scheme to be used in the design 

of any of the various filter types and then illustrate by an example. 

(1) Determine w or b as discussedinSec.il. 
(2) Convert the specifications to those on an equivalent lowpass filter by 

normalizing the frequency scale according to Eq. (3-2),   (3-10),  or 
(3-16). 

(3) Determine  n from the required attenuation or other specification. 
(4) Make a tentative selection of components and determine the normalized, 

unloaded dissipation factor,  a. 

(5) For the appropriate set of curves,   choose a value of d which,  with the 
above value of a,  determines <5,  the k's,  and r.    To minimize the 
sensitivity of the filter to errors in the circuit element values,  operate 
where the curves have the least slope. 

(6) Compute circuit component values according to the figure that applies 
to the circuit being designed. 

(7) Determine whether the circuit is satisfactory.    If not,  select new com- 
ponents in step (4) or make any other change that seems feasible and 
repeat the above steps. 

(8) Construct and align according to Appendix A. 

The following example illustrates this scheme for the design of a narrow band filter. 

Example:   A Chebyshev filter with a center frequency of 50 kHz and a ripple bandwidth 

of 2.0 kHz is required,  and the ripple is to be y - 0.3 dB.    The attenuation should be greater 

than 40 dB for f < 45 and f > 55 kHz.    The circuit is to be that of Fig. 40 with capacitive coupling. 

According to the above scheme the design proceeds as follows. 

(1) Since the ripple bandwidth is specified, ß    = ß   = 1 and b ■ 2 kHz. 

(2) The frequency transformation of Eq. (3-2) is then fl = (f — fo) x 10"   . 
So the frequencies 45 and 55 kHz correspond to ft = ±5 rad/sec. 

(3) We see from the attenuation curves for a CH filter with a = 0.3 dB 
that AT (5) = 42 dB for n = 3.    Thus for this filter we have n = 3. 

X-l 

(4) Identical inductors of 0.56 mH are selected.    These are made using a 
type 1811P-A160-3D3 Ferroxcube pot core wound with 59 turns of 
61/44 litz wire.    The tuning capacitors are to be polystyrene,  resulting 
in QQ = 400 at 50 kHz.    The total resonating capacitance is CQ = 18.1 nF. 
Since p = b/fQ = 0.04,  then a = l/pQ0 

s 0.0625,  which is considerably 
less than a for the CH 3-0.3 filter, max 

*ln this case the dissipation in each tuned circuit can be divided arbitrarily between the inductor and the 

capacitor. 
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(5) We continue and choose d = 0.5.    Then from the curves we read the 
values: 

ö = 0.897 

k12 = 0.822 

k23 = 0.775 

T= 0. 680 

(6) Our circuit is shown in Fig. 47,   and the circuit element values are 
computed according to Fig. 40. 

C12 = pC0k12 = 595PF 

C23 = 0C0k23= 561PF 

Cl = C0_C12 wl7'5nF 

C2=C0-C12-C23RJl7-0nF 

C3^C0-C23*17'5nF 

R
B 

=
   2,bC0

1(d-a)=8'19k" 

RI-   2,bC0
1(5-a)-5-27kn      • 

The transfer impedance at 50 kHz is 

IE. J3 
I 27TbC0 

= 3.01 kfi 
1 

(7)    The component values are satisfactory so the design is complete. 

The filter was constructed and aligned according to the method outlined in Appendix A.    Its 
transfer impedance at 50 kHz was measured as 2.86 kfi which is a 5-percent error compared to 
the theoretical value of 3.01 kß.    Its measured amplitude vs frequency response is shown in 
Fig. 48.    The pass band is quite close to the designed behavior, but the skirts are a bit unsym- 
metrical.    The attenuation on the low frequency side of the pass band increases at a slightly 

higher rate than that on the high side because of the zeros of transmission at zero frequency 
and the cluster of three poles in the vicinity of —50 kHz.    Since the circuit has capacitive coupling, 
there are five transmission zeros at co = 0.    If we approximate the effect of the poles by assuming 
that they are concentrated at —50 kHz,  then the overall distortion caused by these three poles and 

2 3     f   5 five zeros relative to that at 50 kHz is given by the factor (—TTTTä)    (TZ) , where f is in kilo- 
hertz.    If the effect of this factor is removed from the measured curve in Fig. 48, the pass band 
is essentially unchanged, but the skirts are shifted to pass through the squares.    The shifted 

curve (which is the response of the three poles in the vicinity of 50 kHz) is nearly symmetric* 
and is in close agreement with the theoretical curve,  A   (f - 50),   (17 dB at 48 and 52 kHz,  42 dB 
at 45 and 55 kHz,   and 60.5 dB at 40 and 60 kHz).    Thus,  the amount of skewing can be predicted 
quite accurately.    Note that skewing can be controlled to some extent by changing the kind of 

coupling reactances that are used,  thereby changing the number of transmission zeros at zero 
frequency.    In the above circuit,   for example,   if one coupling reactance were capacitive and the 

other inductive, there would be three transmission zeros at zero frequency.    The skewness would 
be less than 1 dB at 40 and 60 kHz. 

*Within the accuracy of the narrow band design, the poles are placed symmetrically about the line s = a + i w-.. 
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MO :««  ±s ±s i ±°3 i it«. 

Normalized coupling coefficients (p = w/u- = b/fn): 

C 
k,„ = '12 

'2  P/^C 
and      krt_ = 

_ yL22L33 

22 
23 pL, 

■23 

where 

C.. = self-capacitance of node 1 = C. + C.„ 

Cyy = self-capacitance of node 2 = C« + C.0 

42 = self-inductance of node 2 = 
4 43 
4 + 43 

443 L«« = self-inductance of node 3 = T- 
JJ L3 + L-23 

Normalized parasitic dissipation factors: 

0n        , , /   r. g. u0        1 1 /   ri 9i  \ 
= — =dr=1  —T+—F"      for i= 1,2, and 3 p      pGL     p\unL.    urtC./ '  ' P      pQ0     Px«0-i    «0v 

-1 . 
where D~ = Q~      is the parasitic dissipation factor of a tuned circuit. 

Source and load conductances: 

Gs = wCn(d-a)     and     Gi  = wC33(6 - a)      . 

Transfer impedance at u^: 

I, 
'Ai5 

33 

Fig. 40.   Network (using coupled parallel resonant circuits) and equations for realization 
of three-pole narrow bandpass filter. 
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Normalized coupling coefficients (p = w/uQ = b/fQ): 

whe 

y^ v "11 "22 ,     , L23 
k12-       <„ and     k23" 

'12 
x/4343 

C1C12 
C.. = self-capacitance of loop 1 = p——^— 

M ^1^*12 

2   12 
C«9 = self-capacitance of loop 2 = r    , r— 

L2     ^12 

U2 = self-inductance of loop 2 = U + L- 

^33 = se'^"'nc'uctance °f '°°P 3 = L« + L«3 

Normalized parasitic dissipation factors: 

where D_ = GL      is the parasitic dissipation factor of a tuned circuit. 

Source and load resistance: 

R  = wL    (d - a)     and     Ri = wl_33(5 - a) 

Transfer admittance at u-.: 

= 7=Ä = i(i + ^)   *>-'.*,«da 
-i. 

u = urt       v    11 33 

Fig. 41.    Network (using coupled series resonant circuits) and equations for realization 
of three-pole narrow bandpass fil.er. 
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3  r*h   L. 

'.to 

t 
gi     TCi   fC 

■viHir- 

(D 

Normalized coupling coefficients (p = w/uQ = b/fQ): 

C, 
k,„ = 

'12 

12   P/C„C 
and     k23 = 

11    22 
w^ 

22^33 

22 
L33 

where 

C.. = self-capacitance of node 1 = C. + C.« 

C~« = self-capacitance of node 2 with loop 3 open = C« + C.« 

L«« = self-inductance of node 2 with loop 3 open = L~ 

L«.~ = self-inductance of loop 3 with node 2 shorted = L„ 

Normalized parasitic dissipation factors: 

0n        , ,   /  r? g. 
= — »-4-- -(—!

r+—js-\     far I-1,2, and 3 p      pQ0     p^.     „^ 

Source conductance and load resistance: 

G  =wC11(d-a)     and     ^ = wL33(6 - a)     . 

Current transfer ratio at ufi: 

vs "33 

Fig. 42.    Network (using coupled parallel and series resonant circuits) and equations for realization 
of three-pole narrow bandpass filter. 
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LcVLa) 

s     L   +L+L 
a      D       c 

L = L = Lf + L 
s      f      e 

L   L 
a   c 

a      D 
|M|=L 1    '     e 

K=- 
IMI 

A 
L   L 
a   c 

P   s 
K + ^K + lJ\ 

1/2 
K = - 

IMI 

A1*" Mvv 

Fig. 43.   Equivalent circuits for conversion of a T or IT of inductors into a transformer. 
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Normalized coupling coefficients: 

k23=^ 

Normalized dissipation factors: 

wC.     wL     wC3 

Source and load conductances: 

Gs = wC1 (d-a) 

Gi=wC3(6-a)     . 

Transfer impedance at DC: 

h 
u=o wy^ 

Fig. 44.   Three-pole, polynomial type lowpass filter. 

41 
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13-62-48.11 
L4 R4 I4 

Normalized coupling coefficients: 

1 
k12 = 

Vci4 

k23 = 

k34 = 
1 

w/C.L 
3"4 

Normalized parasitic dissipation factors: 

o = 
G1 = "2   = 

G3 ^ R4 
wC.     wL    wC«    wL, 

Source conductance and load resistance: 

G$ = wC1 (d - a) 

Rt =wL4(6-a) 

Current transfer ratio at DC: 

I, 

o = 0 -A1; 
Fig. 45.   Four-pole, polynomial type lowpass filter. 
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11 tV      ?Gt      ^ TS ?<\   ±C. 

L^J 

Normalized coupling coefficients: 

1 
k12 = 

k23 = 

k34 = 

WA4 
1 

i 

«y5^ 
Tuning: 

u "2 = LC, ■ 
1C1 = L2C2 = L3C3=L4C4 

Normalized parasitic dissipation factors: 

Source conductance and load resistance: 

= i(A + ÄK<DL + DC.>    fcrl-WA—4. 
I I 

G =wC. (d-a)     and     R=wL, (B-a)     . 
SI 14 

Current transfer ratio at wQ: 

u = un v    14 

Fig. 46.   Wide bandpass filter derived from four-pole lowpass filter of Fig.6. 
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Fig. 47.   Circuit for three-pole capacitively coupled 
bandpass filter. 

m 

>    40 
t- < 

FREQUENCY  (kHz) 

Fig. 48.   Measured amplitude vs frequency characteristic of CH 3-0.3 
filter in the example. 
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IV.    DESIGN DATA 

In this section we present the design data in Figs. 49-167 in order of increasing filter com- 

plexity (n = 2 through 5 poles).    For each value of n the data are arranged according to type of 
transfer function in the order Butterworth,  Chebyshev,  and Bessel.    For Chebyshev filters the 
data is given in order of increasing passband ripple. 

Fig. 49.   BU2; 8, k^, and   T. 
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Fig. 50.   CH2; 6, k]2, and r. 
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Fig. 51.   BE 2; 6, k^, andr. 
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Fig. 52.   BU 3, 6. 
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Fig. 53.   BU3, k^. 
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Fig.'54.   BU 3, k^. 
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Fig. 56.   CH 3-0.01, 6. 
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Fig. 57.   CH 3-0.01, k^. 
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Fig. 58.   CH 3-0.01, k^. 
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Fig. 59.   CH 3-0.01, r. 
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Fig. 60.   CH 3-0.03, 6. 
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Fig. 61.   CH 3-0.03, k^. 
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Fig. 62.   CH 3-0.03, k 23* 
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Fig.63.   CH 3-0.03, I\ 
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Fig.64.   CH 3-0.1, 5. 
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Fig. 66.   CH 3-0.1, k^. 



Fig. 67.   CH 3-0.1, r. 



Fig. 68.   CH 3-0.3, S. 
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Fig. 69.   CH3-0.3, k^. 
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Fig. 70.   CH 3-0.3, k 23* 
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Fig. 71.   CH 3-0.3, r. 
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Fig. 72.   CH3-1.0, 6». 

68 



0.90 

0.80 

"12 

0.70 

0.60 

Fig. 73.   CH 3-1.0, k^. 
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Fig. 74.   CH3-1.0, k^. 
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Fig. 75.   CH3-1.0, r. 
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Fig. 76.   BE 3, 6. 
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Fig. 77.   BE 3, k^. 
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Fig. 78.   BE 3, k^. 
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Fig. 79.   BE 3, r. 
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Fig. 80.   BU4, 6. 
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Fig. 81.   BU4, k^. 
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Fig. 82.   BU4, k23. 
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Fig. 84.   BU4, I\ 
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Fig. 90.   CH 4-0.01, 6. 
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Fig. 92.   CH 4-0.01, k^. 
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Fig. 95.   CH 4-0.03, 6. 
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Fig. 96.   CH4-0.Q3, k^. 
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Fig. 103.   CH4-0.1, k^. 
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Fig. 112.   CH4-1.0, k^. 
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Fig. 117.   BE 4, k23. 



34 

Fig. 118.   BE 4,1^. 



0.28 

0.24 

0.20 

0.16 

0.12 

0.08 

0.04 

Fig. 119.   BE 4, r. 



2.8 ü 
IÖ.121I 

26 r. 0.16^ 

8     24 

2.2 

2.0 

1.8 

„I 

1.2 | 
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 

d 

Fig. 120.   BU5, 8. 

116 



12    0.6 
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Fig. 122.   BU5, k^. 
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Fig. 127.   CH5-0.001, k^. 
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Fig. 129.   CH 5-0.001, k^. 
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Fig. 131.   CH5-0.001, r. 
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Fig. 135.   CH5-0.01, k 
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Fig. 136.   CH5-0.01, k^. 
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Fig. 137.   CH 5-0.01, r. 

133 



8     1.4 

Fig. 138. CH 5-0.03, 6. 
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Fig. 141.   CH 5-0.03, k^. 
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Fig. 142.   CH5-0.03, k^. 
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Fig. 143.   CH5-0.03, I\ 
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Fig. 150.   CH5-0.3, 6. 
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Fig. 156.   CH5-1.0, 6. 
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Fig. 157.   CH5-1.0, k^. 
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Fig. 158.   CH5-1.0, k^. 
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157 



20 [ IINHIlllllNlllllllllHlllllllillllUHIilllilllllltllltltlltlMltllllllllilllll 1 
Up                                                               1     1-62-49281 

16| 

w| q*Q it 

PrtlMtMlK 
cBlil« 

12 BMH 
MoW 

oS 

a ]~T   ;   12~VJ 

:l.*t|a 
^_: jTtrn>>UJi ITTTTTITI I y j i TrMfrH il 1 nTti*t44l-U 1 r^t^i4° 

sT^OSs^l 
8; S&^isiu ^^Si, f^1 

o r> 
""S^^jv^JS^^ 

iiiiiiJEWMMl 
fflmmJntiy W^WmB 

4 

Fig. 162.   BE 5, 6. 

158 



Fig. 163.   BE 5, k^. 
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Fig. 164.   BE 5, k 
23" 

160 
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Fig. 166.   BE 5, k^. 
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APPENDIX A 
ALIGNMENT PROCEDURES 

The alignment of narrow bandpass filters is fully covered by Dishal,     so only a summary 
will be given here.    The object of the alignment is to tune the self admittance (impedance) of each 

node (loop) to the specified center frequency.    The coupling elements should be considered as 
fixed,  so one of the other two elements at each node (or in each loop) must be variable and the 

other fixed. 

A convenient alignment procedure,  requiring no internal measurements on the filter,  is as 

follows (the coupled node circuit of Fig. A-l(a) with variable capacitors is used as a specific 

illustration).    Apply a sine wave of frequency fQ from a high impedance source to port A,  put a 
high impedance and low capacity voltmeter between node 1 and ground,  and short circuit node 2 

to ground.    The impedances of the source and voltmeter should be high enough not to broaden 

appreciably the resonance of L1 and C|J  adjustment of the resonant frequency should be to the 
order of 1/2 percent of the filter bandwidth.    Adjust C, so that the voltage E. is maximum.    The 

self admittance of node 1 is now tuned properly.    Next remove the short circuit from node 2 and 
short circuit node 3 to ground.    Adjust C2 so that E. is a minimum;  now the self admittance of 
node 2 is properly tuned.    Remove the short circuit from node 3 and short circuit node 4 to 

ground.   Adjust C3 so that E1 is a maximum.    Continue in this way until the end of the network 
is reached,  and when adjusting C   be sure that R. is disconnected.   After C   is adjusted, the 

network is aligned except for the effect of capacitance of the voltmeter across C..    After the 
voltmeter is removed, the final adjustment of C1 can be made by exciting the properly terminated 

network from a sweep generator and adjusting C. for best response.    Usually the response of 

the filter is now satisfactory, but sometimes it is necessary to make further adjustments of the 

other C's while observing the response with the sweep generator. 
Sometimes in the alignment the adjustment of the C's near the output cannot be made accu- 

rately enough by working from the input; it is then advantageous to work from both ends toward 
the center. 

Alignment of the other narrow bandpass circuits is done in an analogous manner.    For the 

coupled loop circuit of Fig. A-4(b),  apply a sine wave of frequency fQ from a low impedance 

source to the input port and put a low impedance current probe in link 1.    Open link 2 and adjust 
one of the reactances of link 1 for maximum current in link 1.    Next close link 2,  open link 3 
and adjust a reactance in link 2 for minimum current in link 1.    Continue in this manner,  alter- 

nately adjusting for maximum and minimum current,  until all loops are tuned.    Compensation 
for the inductance of the current probe and any other further trimming that is necessary can be 

done as before using a sweep generator. 
The alignment of the mixed circuit in Fig. A-l(c) should require no explanation. 

The general idea in the alignment of any of the narrow bandpass filters is to obtain coupling 
reactances that are within 3 percent of the calculated value and the remaining elements that are 

within 5 percent of the calculated value. Then tune each node or loop so that its tuning error is 
less than 1/2 percent of the bandwidth of the filter. 

The problem of aligning the lowpass filters of Fig. A-2 is trivial.    Components whose value 
is in error by less than 5 percent of the computed value will satisfy all but the most fussy.    If 

one wants to be fussy   a 3 percent tolerance is sufficient. 
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Fig. A-l.    Practical realizations of narrow-band filters. 
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For the alignment of the bandpass circuit of Fig. A-3,  the resonant circuits must be tuned 

individually to the center frequency.    This can be accomplished by a procedure similar to that 

for narrow bandpass filters.    Apply a sine wave of frequency f0 from a high impedance source to 
the input port of the filter,  put a high impedance voltmeter between node 1 and ground,   and open 
link 2.    Adjust C^ or L. so that E. is maximum.    Next close link 2 and short circuit node 3 to 

ground.    Adjust C2 or L2 so that E. is minimum.    Remove the short circuit from node 3 and 
open link 4.    Adjust C~ or L~ so that E^ is maximum.    Continue until the end of the network is 

reached,   and be sure that the load is disconnected when the last reactance is adjusted.    The 

reactance that remains fixed during the tuning procedure should have a value that is within 3 or 

5 percent of its theoretical value.    An alternate procedure is to place each resonant circuit be- 

tween a resistive sine wave generator of frequency fQ and a resistive load.    Then the variable 

reactance is adjusted for maximum load voltage with series resonant circuits and minimum load 
_3 

voltage with parallel resonant circuits.    The tuning error should be less than 10      x f   in either 
case. 
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APPENDIX B 

ANALYSIS OF DISSIPATIVE,   DOUBLY TERMINATED BANDPASS 

AND LOWPASS LADDER FILTERS 

In this appendix transfer functions of the narrow band networks of Fig. A-l will be derived 

using standard matrix methods of network analysis along with narrow band approximations for 

the impedances of the tuned circuits.    These transfer functions are valid in the vicinity of the 

pass band.    A similar analysis is made of the lossy lowpass ladder networks  of Fig. A-2 
(with no finite zeros of transmission) to show the equivalence in form of the transfer functions 
of these two types of filters.    Finally,   a method of deriving a lossy wide bandpass filter from a 
uniformly lossy lowpass filter is presented.    Thus,  with the proper definition of the design pa- 

rameters,  the results presented in this report can be used for the design of filters of each type. 

The results are not new but a few new and interesting points are brought up along the way.    In 
addition,  the process of frequency normalization makes the design parameters arise naturally 
during the course of analysis. 

I.    NARROW BANDPASS FILTERS 

For the circuit of Fig. A-l(a), let <J   be the node source-current vector (or column matrix), 
& the node voltage vector (or column matrix),  and  ^ the node admittance matrix.    Thus,  the 
node voltage equations can be written compactly as 

i=BS 

where 

(B-l) 

pi M k 
= 

0 

|> 0 

(B-2) 

E, 

6   = (B-3) 

and 

169 



y = 

Yii     -Yi2       ° 

- V Y — Y 
M2 *22 x23 

0 "Y23 Y33 

0    .     .     0 

.    .   0 

Y —Y n-1, n-1 n-l,n 

— Y Y n-1, n nn 

(B-4) 

y  is an n by n matrix whose only nonzero elements are on the main diagonal and on the two 

diagonals adjacent to it.    This occurs because only the coupling between nonadjacent nodes is 

zero.    Equation (B-l) can be solved formally for any of the node voltages E..    By inverting it 
-1 -1 1 

we obtain & = ^     i, where 1i~   is the inverse of ^ .    So for E. we obtain, 

VI.VI*! (B-5) 

where \y | is the determinant of ^,  and ^.. is the cofactor of the element in the first row and 

i     column of I 3* I.    For i = n we have E    = I. \  /I V I where 11 n      l  In  '    ' 

»in-«-1» 
n+1 

— Y Y 
M2 *22 "Y23        ° 

"Y23 Y33 

-Y. 34 

-Y n-2, n-1 

— Y Y 
n-2, n-1 n-1, n-1 

-Y n-1, n 

(B-6) 
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Evaluation of this (triangular) determinant is easily carried out by expanding it by elements of 

the first column and continuing likewise for the-lower order determinants.    The result is the 

product of the main diagonal elements.    Therefore, 

\n = (-l)n+1(-Y12)...(-Yn.ln) = Y12Y23...Yn.ln     . (B-7) 

For this narrow band situation it is assumed that the reactive coupling admittances are constant 

and have a value equal to that at the center frequency.    Let 

Yi. i+i ■ iBi, HI   • <B-8> 

Thus, if the coupling is capacitive, B.   ... = CU..C.   .,., and if it is inductive, B.   ... = — (w-L.   .,.)    . 

So with Eq. (B-8) 3     is 

*!„• in"lBi2B23 -Vi.»   • (B-9' 

Since this is as far as it is necessary to carry ^ , we now consider | ^ |.    The narrow band 

approximation will be applied to the main diagonal elements of \^\,  and | ^ | itself will be reduced 

to a normal form. 

A main diagonal element of | ^ | is Y..,   and the narrow band approximation will be made by 

expanding Y..(s) in a Taylor series about sQ = io>0, 

Y..(s0) = «0CüDi(l- i -Ji-)"1 - »„CyD,      . 

*ii<»>■ *uV♦ <■-■b»(-art.   ♦••■   - s-sQ 

and retaining only these two terms.    For Y..(sQ) we obtain, 

JohJ 
and for the derivative we obtain, 

(—r1)        =2C..(i + i—ft-*...l*2C« V  ds ;S=SQ n\ u>0C.. ) 

So for Y. .(s) we have approximately, 

Y..(s) = C.. [w0D. + 2(8 - iw0)]      . (B-10) 

At this point it is convenient to introduce the normalized frequency variable X = s — io>Q/(w/2), 

where w (rad/sec) is the desired bandwidth of the filter.    For example,   for a Butterworth filter 

w might be its 3 dB-bandwidth,  or for a Chebyshev filter w might be its ripple-bandwidth.    The 

choice of w and its relation to the design data is explained in Sec. II.    So \ is the deviation from 

the center frequency in units of half the filter bandwidth.    The variation of Y.. with X will be 

designated y.. =y..(X),   so 

yii = Cii(w0Di + wX) = wCiiU + *iJ      * (B_11) 

Since this is the desired form for the main diagonal elements of | V \,  now we will look at | ^ | 

itself. 
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By using Eqs. (B-8) and (B-ll) in the matrix  V (Eq. B-4)  | 'Ü | now is 

-iB 12 

-iB 12 

-iB 23 

-iB n-1, n 

n-1, n-1 n-1 n-1, n 

wC    (X + d ) nn n 

(B-12) 

There is only one more step before we are finished working on | ^ |,  and that is to factor the 
Xl_ 1.1. 

quantity JwC.. from the i     row and the i     column of | y |.    The main diagonal elements then 

become \ + d.,  and the other elements become: 

— l ■ 
12 = -ik 

W*/C11C22 

The determinant I ^ I then is 

1Z 

B 
23 

'N/
C

22
C

33 

= -ik 23 etc. 

|^|=wn
CllC22...Cn 

-ik.7        (X + d,)        -ik, "12 u2,        -«JJ 

-ik23        (X + d3) 

0 

<X + dn-l>       -ikn-l.n 

°       "ikn-l,n <* + dn> 

(B-13) 

The determinant on the right side of this equation is an n     order polynomial in \,  QnU) = 

\    + q     .X        + . . .  + q.A. + qfl, whose coefficients are real,  and it will be called the character- 

istic polynomial.    It is not obvious that the coefficients are real,   so we will make a small digres- 

sion to prove this.    At the same time a result is obtained that will be useful later to show the 

equivalence of the transfer functions of the filters of Fig. A-l. 

The determinant in Eq. (B-13) is of the form 
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»   - 

all        a12 

a21        a22 

0   . 

*23 

a32        a33 

.     .    0 

n-1, n-1 

an, n-1 

.    0 

.   0 

0 

n-1, n 

a nn 

where the superscript n is used to denote that it has  n rows and n columns.    First,   expand 

A*n' in terms of the elements of the n     column to obtain 

A(n) = a    A     + a    ,    A     . nn   nn       n-1, n   n-1, n 

The minor A      is just the determinant &        ',  and by crossing out the (n - l)sx row and n     col- /  \  nn »     p\ 
we see that the minor A    4      = —a AA    "    .    Thus we obtain the result desired: n-l, n n, n-l umn in A 

A(n) = a    A(n-l)_a A(n-2) 
nn n, n-1  n-1, n 

By applying this result to Q (X) we obtain 

(B-14) 

^'^VVIW^-MVZ (A) (B-15) 

A continuation of this process easily shows that Q (X) does have real coefficients.    In addition, 

by starting the expansion of A      with the elements of the n     column we have obtained in 

Eq. (B-15) a recursion formula for the polynomial Q (X).    We can now return to the main stream 

of thought.    Equation (B-13) is 

h|=wn
CllC22...  CnnQnU)      . 

With Eqs. (B-5),  (B-9),   and (B-16) we have for the transfer function 

,n-l E 
_r 
I 

in_1B,,B9, . ..  B     ,  12   23 n-1, n k12k23 •••  kn-l,n 

1 wn
CllC22 ' ' ■  CnnQn(X) V^C^A) 

(B-16) 

(B-17) 

which is the desired form.    Since the coefficients of the polynomial Q (A.) are functions of the 

normalized coupling coefficients and dissipation factors,  these 2n — 1 parameters determine 

the frequency behavior of the transfer function.    In Eq. (B-17) the frequency scale is normalized, 

but the multiplying factor is not.    For example,  the actual ratio between output voltage and input 

current at the center frequency (s = ia>0 or X = 0) is 

X=0 

in     k     k               k n-1 
i       Ki2K23--- Kn-l,n i     aT 

w I C.jC    qrt w l C..C V    11   nn40 v    11   nn 

(B-18) 
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Since qQ and the k. +1's depend only on the normalized frequency behavior of the filter and not 

on the impedance level of the circuit, the factor (k12
k73 ' • ■ k -l /q0^ in Eq* ^B-18^ is defined 

as r, a normalized quantity that will be convenient to have available for determining the filter 
gain;   T  is given with each set of data.    The gain of the filter at the center frequency then is 

E 

X=0 *JC^ 
(B-19) 

nn 

We next consider the filter of Fig. A-l(b).    Since the circuits of Figs. A-l(a) and A-l(b) are 
duals, we can obtain any result necessary by inserting the dual quantities into the equations just 

derived.    The normalized parameters change only from the point of view of their definitions in 

terms of the circuit element values.    The result of major interest is the transfer function I /E. 
which,  from Eq. (B-17),  is 

E, 

in-1k    k k 1 K12K23   ■•>    Kn_l<n   _ 
• n-1     „ 
i     q0r 

"JZ^A™ wJLllLnnQn<X) 
(B-20) 

and that the quantity (B-19) is also of interest here in determining the filter gain. Since the 
concept of duality is widely known, it is unnecessary to make any further remarks about the 
analysis of this circuit. 

The circuit in Fig. A-1(c) is a combination of the two circuits that were just considered.    It 
is useful when one has a high resistance source and a low resistance load or, by turning it around, 

a low resistance source and a high resistance load.    The analysis of this circuit will be carried 

out using as the unknowns the node voltages E,, . .. E. and the loop currents I. + 1, . . . I     with node 

current equations for the left-hand part of the circuit and loop voltage equations for the right hand 
part.    For node i and loop i + 1 the following equations involve both E. and I. + 1. 

node i, 

loop i + 1, 

In terms of the source vector 

0=-Yi-l,iEi-l + YiiEi + Ii+l 

0 = -E. + Z. + lj i+1Ii+1 " Z.+1) i+2Ii+2 

(B-21) 

2    = 

which has n components, the node voltage and loop current vector 
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E, 

? = 

E, 
l 

W 

and the n by n circuit matrix  )R,  the matrix equation for the circuit is 

a = *? 
The matrix   % is given in Eq. (B-22). 

*C4I(* + d4) -1B12 0  . 

wC„(X+d,)      -IB, -iB 
12 -22 

-iD 
'23 

'       .       -lBi-i.i ° 

»M.I     *Si<* + d
i> i o 

0 -« »Li+t.i+1<* + <W       -*„♦!. „« 

0 -1Xn+l.„+2 

n-l, n-l n-l n-l. 

"n-l. ii nn n 

(B-22) 

The narrow band approximation has been applied to the elements of JH .    The formal solution for 

Vs 

In = IAn/l*l (B-23) 

where | ft | is the determinant of Ä, and %in is the cofactor of the element in the first row and n 

column of I % I.    We see that )R.    is 1    ' In 

th 
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,Kin = (-l)
n+1<-iB12,.. .(-iB._li.H-l)(-iXi+1_.+2)...(-iXn_lin) 

12 l-l, l   l+l, i+2 n-1, n (B-24) 

This completes the reduction of the cofactor JR.   ,  and now as before we will factor the rows and 

columns of | % \ so that the main diagonal has elements of the form \ + d..    From Eq. (B-22) we 

see that this is done by factoring   / wC   from the j     row and the j     column of | JR |  for j = 1, 2. . . i, 
and by factoring   /wL     from the ktn row and the ktn column of \% | for k = i + 1, . . . n.    This will 

automatically define for us the normalized coupling coefficient between the i     node and the (i +1) 

loop as the element in the i     row and (i + 1)     column of this modified determinant.    The result 

of carrying out this process is given in Eq. (B-25). 

C14... CuLi+1  i+1 . . . Ln] 

(X + dj)        -ik12 0 

-ik12 (X + d2) 

-i/1 

'Sih+i.i+i' 

<* ♦ «w 

-i/2 

■   <* + <W      -ikn-l.r 

0       -ikn-1.n       ,X + dn> 

(B-25) 

So we see that 

k. 
i, i+1      W/C   T )l/2 w(CiiLi+l, i+l' 

(B-26) 

The determinant in Eq. (B-25) is not quite like that in Eq. (B-13), but since in its expansion 

[see Eq. (B-14)] the elements off the main diagonal occur only as products (—a, k-1a, . ,) the 

determinant in Eq. (B-25) is the same polynomial,  Q^U),   as that in Eq. (B-13).    Thus 

(B-27) 

So for the transfer function I /l^ we obtain from Eqs. (B-23),   (B-24) and (B-27), 

l»l=wnC11...CuLi+lji+1...LnnQnW 

-i B12... Bi.1  tXi+1 i+2... \_iiB 

*nC11...CilLi+1>1+1...LnnQn(X) 

12 23 n-1, n -Anr 
W^lSTnQn(X) "JWM" 

(B-28) 

which is the same form as that of the other two filter circuits. 

Now,   if instead of the current source I, at node 1 in Fig. A-l(c),  we have a voltage source, 
E ,   in loop n whose positive direction is counter to that of the positive direction of I ,  we have 
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a circuit for use with a low resistance source and a high resistance load.    The source vector 2 

is 

2   = 

0 

and the transfer function E./E    = — JR    /| JH |.    It is easy to show that E /E   is identical to the 

expression for I /i. in Eq. (B-28). 

Thus,  the transfer functions of the narrow bandpass filters in Fig. A-l have been derived 

and are given by Eqs. (B-17),  (B-20) and (B-28).    By using the appropriate definitions for coupling 

coefficient and dissipation factor,  all the transfer functions have the same form.    In fact,  they 

contain the common factor,  i (k.^k,, . . . k     .     )/wQ (X),   so that all can be designed from the i.e.  c.J n"*!, ri n 
same data,  which are presented in this report for a wide variety of often used transfer functions. 

This completes the analysis of the narrow bandpass filters.    Now we will make a brief 

analysis of lossy lowpass filters and then discuss a method for deriving a lossy wide bandpass 

filter from a lowpass filter. 

H.    LOWPASS FILTERS 

The lowpass circuit to be considered is shown in Fig. A-2.    All reactive elements have 

dissipation as shown and the circuit has no finite transmission zeros.    We will be concerned 

with finding the transfer function of this circuit and showing that it is similar in form to that 

of the narrow band filters.    The first component at the input is assumed to be a capacitor and 

the output is as shown,   depending on whether n is odd or even.    The dual circuits are obtained 

easily and their parameters will be obvious so they will not be discussed.    The choice of circuit 

variables might at first appear to be awkward,  but once the matrix for the equilibrium equations 

is written,  it becomes a simple matter to obtain the desired result. 

The variables to be used,  the node voltages and link currents,   are shown in Fig. A-2.    Either 

the node voltages or the link currents alone are sufficient to determine the network behavior, but 

by using both we can show easily that the transfer function of the lowpass network of Fig. A-2 is 

equivalent in form to the normalized transfer function of the narrow band filters of Fig. A-l.    The 

equilibrium equations for the lowpass network are 
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h - Y!E1 + h 

0 ' ~Ei + Zlh + E3 

0 = ~h + Y3E3 + h 

0=-E     ,, + Z     .1     ,+E n-2        n-1 n-1        n 

0 =-I    , + Y E 
n-1        n   n 

for n odd 

If n is even the last two equations of the set are: 

0 = -I    , + Y    ,E     .+1   | n-2        n-1   n-1       n 

0 = -E     , + ZI n-1        n n 

for n even 

The branch admittances and impedances are: 

G, + < 
Y, = sC, + G, + G    = wC, (— +     i „   s\ = v/CAX + d J 1 11s l\w wC,    / 1 1 

Z2 = sL2 + R2 = wL2 wL2(X + d2) 

(B-29) 

G_ + G, 
Yn = sCn + Gn+Gt = wCn(* + "WC^) = wCn(X + dn>      >       for n odd 

R     + R 
even (B-30) 

The normalized frequency is \ = s/w.    In the final form of these expressions,   frequency and 

dissipation factors have been normalized by the bandwidth of the lowpass filter,  w(rad/sec).    For 

the present it will be assumed that n is odd.    Later it will be easy to see what the result is for n 

even.    In terms of the source vector 

L 

2   = 
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the node voltage and link current vector 

h 
E. 

9   = 

E 

and the n by n circuit matrix  )R,  the matrix equation for the circuit is 

2 = %9 

The matrix   % is 

Y1 1 0 0 

-1       z2        1        0 

0 -1        Y0 

Jn-1 

-1 

(B-31) 

The main diagonal elements of  %  are the branch admittances and impedances whereas the ele- 

ments of the diagonal just above it are all +1 and those of the diagonal just below it are all — 1. 

The transfer function of the network is 

For  %   of Eq. (B-31) it is easy to see that the cofactor Ä.    = 1 for all n.    Equation (B-14) could 

be used to expand | % \, but we do not need to carry the work this far.    By using Eq. (B-30) in 

Eq. (B-31) we obtain for | Ä |, 
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wC1(X + d1) 

-1 wL2(A + d2) 

wLn-1(X + d^) 

-1 wCn(X ♦ dn) 

.        (B-32) 

Now we will factor   /wC, from the first row and the first column,    /wL   from the second row 

and second column,  and so on.    Then we obtain Eq. (B-33). 

|»!=wn
ClL2...cn 

(X + d4) 

-(w^C^f1 (X + d2) {v/JT^C~3)~ 

-^mcif (X + d,) 

(B-33) 

For this lowpass filter define the coupling coefficients as 

1,1 
'12 w^C7 

v23 n-l,n 
'1^2 W7L2C3 

By using these definitions in Eq. (B-33) we obtain Eq. (B-35) for | %. |. 

k 

"J^^n (B-34) 

w IC.C 
V    1   n 

k12k23"- kn-l, 

(X + d4) 12 

-k12        (X + d2) 

-k 
2 3 

2 3 

(X + d3) 

(X + d    ,)       k    , 
n-1 n-l,n 

-kn-l,n        <* + dn> 

(B-35) 

Now by using Eq. (B-14) we see that the determinant in Eq. (B-35) is the polynomial Q (A) which 

has already appeared in the analysis of the narrow bandnaas filters.    Thus the transfer function is 
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E k,0k,_ . . . k     . 
_n a     12 23 nrl,n   =  " (B-36) 
Jl w^C;Qn(X) w/C^Q^X) 

for n odd.    For n even we find,  in an analogous manner,  that the transfer function I /i. is 

}n _ k12k23"- kn-l,n _ q0F (B-37) 
11   "      "J^rfinM      ' w/^Qn(X) 

Thus the transfer functions of the lowpass filters,  Eqs. (B-36) and (B-37),  and those of the narrow 
band filters,   Eqs. (B-17),   (B-20),  and (B-28),  are identical in form (the narrow band filters have 
additional constant phase shift,   as represented by the powers of i,  that does not occur in the 

lowpass filters).    Thus any of the filters can be designed from a set of data that applies to one 

of them.    For a particular circuit the appropriate definition of the coupling coefficients and dis- 
sipation factors must be used. 

HI.   WIDE BANDPASS FILTERS 

A bandpass filter of arbitrary bandwidth can be obtained from a lowpass filter by means of 
o 

the well-known lowpass-to-bandpass (reactance) transformation (Weinberg,   p. 540).    This ap- 

proach is theoretically exact,  but when parasitic loss in all reactances must be accounted for, 
it becomes approximate and the degree of approximation cannot be defined simply and precisely 
for the general case.    A uniformly lossy bandpass filter of arbitrary bandwidth can be designed 

exactly by predistorting the bandpass transfer function,  but for the purpose of this report we 
want to derive a lossy bandpass filter from a lossy lowpass filter.    However,  we can gain some 

feeling for what the effect of loss (and its distribution between the L's and C's) is by comparing 
the exact realization (in which half the reactances are uniformly lossy and the remaining react- 

ances are lossless) with the case in which all reactances have the same dissipation factor. 
Let us begin by considering the exact realization obtained by transformation of a uniformly 

lossy lowpass filter of Fig. A-2.    The transformation introduces a lossless inductor in parallel 
with each capacitor of the lowpass filter and a lossless capacitor in series with each inductor 
of the lowpass filter.    Thus we obtain a circuit like that in Fig. A-3 but with R. = R. * ...   =0 
and G2 = G4 = . . .   = 0.    It produces exactly the predicted transfer function, but in many cases 
it cannot be realized because we do not have components (usually inductors) that are sufficiently 
lossless.    So the question naturally arises as to how the transfer function is changed if we re- 

distribute the loss so that all reactances have some loss associated with them.    In general this 

question cannot be answered without a detailed analysis of the circuit, but we are looking for a 

simpler yet useful answer.    In the special case of uniform dissipation we can see in somewhat 
general terms how the poles of the resulting transfer function differ from those of the exact one. 

To do this we will obtain the final uniformly dissipative circuit in a way that allows us to keep 
track of its poles. 

Begin with the uniformly lossy (dissipation factor = a) lowpass circuit considered above and 
remove all dissipation from the reactances to obtain the lossless predistorted lowpass filter. 
Then transform this lossless network to a bandpass network by the transformation used above, 

and add dissipation (= a/2) to all reactances.    Now we have exactly the same circuit as that ob- 
tained by splitting the loss in each tuned circuit of the exact bandpass realization equally between 

the inductor and capacitor.    By tracing the poles of the exact realization and of this approxima- 

tion,  we can compare their final locations,  determine when the approximation is reasonably good, 
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and predict the effect on the amplitude characteristic.    It is unnecessary to trace the locations of 
all the poles;  doing so for a pair of conjugate complex poles of the lowpass filter is sufficient. 

Figure B-l(a) shows a conjugate pair of poles of the uniformly dissipative lowpass filter (X) 

and their predistorted location (®) (poles of the lossless,  predistorted lowpass filter).    Figure 
B-l(b) shows how the poles of (a) are transformed by the lowpass-to-bandpass transformation. 

The X's are the poles of the exact realization,  and the ®'s are the poles of the approximation 
before uniform dissipation is added.    Note that Q? < ©^ and as a increases 0, decreases until 

6- = 0 for a = aQ.    Predistortion causes the distance CD to be slightly smaller than the distance 
Ä~B.    Figure B-l(c) shows the final position of the poles of the exact realization (x) [which are 

the same as in Fig. B-l(b)] and of the uniformly dissipative approximation (®).    The latter are 

a distance a/2 to the left of their location in (b).    Since 9^ decreases as a increases, we see 
that the approximation becomes worse at the same time.    Also,  if a is fixed,  the error is greatest 

for the lowpass poles with the smallest value of a    (which is also the maximum value a that r        r o max 
a can have). 

X-PLANE 1)8 

x     6 

H (- 

x     9 

(a) 

Fig. B-l. Pole locations for exact and approximate realization of dissipative bandpass filter, 
(a) Pair of conjugate complex poles (x) of uniformly dissipative lowpass filter and their pre- 
distorted location ($). (b) Third quadrant poles of (a) transformed to bandpass by reactance 
transformation, (c) Final location of poles of exact realization (x) and of uniformly dissipa- 
tive approximation ($). 

Thus far a constant ratio of bandwidth to center frequency has been implied,  but as w/wQ is 
increased and everything else is held constant the performance of the uniformly lossy filter 
improves.    For very large values of W/WQ, both 61 and 92 are nearly 45°. 

In the light of these observations we can see that if a « a the approximation will be 
good (which agrees with intuition) and the distortion of the amplitude characteristic is an increase 
of the upper part of the pass band relative to the lower part.    Since these errors are brought 

about by redistributing the loss in each tuned circuit as discussed above,  it probably does not 
matter much how the losses in each tuned circuit are distributed as long as each tuned circuit 
has a dissipation factor equal to a which is « a        .    If a is less than 1/4 or l/5 a the 

resulting response will be satisfactory for most purposes. 

IV.   SUMMARY 

We have analyzed uniformly lossy narrow band and lowpass filters and have shown that their 

transfer functions can be put into identical forms if certain normalized parameters are defined 
appropriately.    Also lossy bandpass filters of arbitrary bandwidth can be derived in a reasonably 
predictable way from the lowpass circuits if the reactances have small enough loss. 
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APPENDIX C 

SOLUTION FOR THE DESIGN PARAMETERS ASSUMING UNIFORM DISSIPATION 

In Appendix B we found the transfer functions for the circuits of Figs. A-l and -2.    By 

normalizing the frequency and appropriately defining the circuit design parameters,  all transfer 

functions have identical dependence on these parameters (normalized coupling coefficients and 
dissipation factors).    The polynominal Q (X), whose coefficients are functions of the k's and 

d's,  determines the frequency characteristic of the filter.    In order to design a filter,  a set of 

coupling coefficients and dissipation factors must be found that will give the required coefficients 
of Q (X).    This appendix gives the solutions to that design problem for n = 2,  3, 4,  and 5.    For n 13 
n = 2,  3,  and 4, Wagner     used a clever scheme to solve the design problem and his method is 

used here.    For n = 5, Wagner's method fails,   so a straightforward and general method originally 
12 proposed by Dishal     is used.   In this approach coefficients of Q (X) are equated to the corre- 

sponding ones of a polynominal that produces the required transfer function.    To the author's 
knowledge the solution presented here for lossy,  doubly loaded five-pole filters has not been 
published before, but it seems unlikely that it has not been derived before. 

In each case the solution is given in the following form:   one or more of the normalized 
coupling coefficients is expressed as a function of the coefficient of Q (X) and the normalized 
dissipation factors of the circuit,  and the remaining ones are expressed as functions of the pre- 
ceding ones and the polynomial coefficients.    This is a convenient form since, with the assump- 

tion of uniform dissipation, there are at most three dissipation factors involved in a design (d, 

a,  and Ö) and the sum of these must be a constant equal to q__j •    The choice of circuit com- 
ponents determines the level of uniform dissipation a,  and so the sum of d plus 6 is fixed. 

Thus, the coupling coefficients can be considered to be functions of the polynomial coefficients 
q. and the dissipation factor d with the dissipation factor a as a parameter.   All coupling co- 
efficients appear only in the squared form,   so the following notation will be used. 

kl22 = U      '       k23 = v 

, 2 ,2 k34 = w     ,       k45 = x      . 

Also,  when uniform dissipation is imposed,  the notation d, = d,   d~ = . . .   = d  _. = a,  and d    = 6 

will be used.    Since a is the unloaded dissipation factor,  a^dor 6.    We will assume that d ^ ö 
so we have,  a >$: d <£ 6.    This assumption imposes no restriction on the results. 

For n ^ 3, it is possible to have more than one set of u, v. . .,  for the same values of d,  a, 

and 6, that will realize a given transfer function.   An alternate viewpoint to these multiple solu- 

tions is provided by the insertion loss theory of uniformly lossy,  reactive coupling networks. 
In this case multiple solutions arise because of the multiplicity of choices available for the zeros 

of the reflection coefficient at the input terminals of the network.   Green   discusses these multiple 
solutions for lossless Butterworth and Chebyshev filters and finds ranges of d for which they 
are realizable.    The results here verify these findings of Green,  and multiple solutions for the 
lossy cases are also found. 

I.     SOLUTION FOR n = 2 
2 

The desired polynomial is Q,(X) = X    + q,X + qQ.   Equating this to the one obtained from the 
circuit determinant yields 
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Q2(\) = (X + d) (X + <5) + u = X2 + q4X + qQ      . (C-l) 

Wagner's method is to set X = — d and X = — Ö, thus we have 

u = Q2(-d) = Q2(-<5) (C-2) 

which has solutions for d ^ 6.    By equating coefficients of like powers of X in Eq.(C-l) and 

solving for u,  a form recognizable as that of Eq. (C-2) is obtained but,  especially for n = 3 and 

4,  Wagner's approach provides a more elegant solution.    From the coefficients of X in Eq.(C-l) 

we have d + 6 = q.,   so the solution for n = 2 is 

* - qt - d 

u = Q2(-d) (C-3) 

which is the only solution for n = 2. 

n.    SOLUTION FOR n = 3 

The polynomial obtained from the circuit determinant is Q~(X) = (X + d  ) (X + d_) (X + d  ) + 

k12(X + d  ) + k2-(X + d.).    By using the abbreviations mentioned above and equating this poly- 

nomial to the desired one,  we obtain 

Q3(X) = (X + d) (X + a) (X + 6) + u(X + 6) + v(X + d) 

= X3 + q2X2 + q4X + q0       . (C-4) 

2 
By equating the coefficients of X   we obtain q   = a + d + 6.    By setting X = — d and then X = -6 we 

obtain QJ- d) = u(ö — d) and Q3(—ö) = v(d - Ö).    So the solutions for u and v are 

Q-(-d) 

Qo(-ö) 

v — ihr <c-5> 
or 

where 

u + v= q, — dö — a(d +6) 

Ö = q2 — (a + d)      or      Ö — d = q- — (a + 2d) 

For the case d = Ö,  Eq. (C-5) cannot be used easily as it is.    Go back to Eq. (C-4) and write the 

lower line in factored form [Q0(X) has a real root at X = — cr and a pair of conjugate roots at 

X = — |i ± W v   — n  ]. 

(X + d)2 (X + a) + (X + d) (u + v) = (X + cr) (X2 + 2nX + vZ)      . (C-6) 

Since (X + d) is a factor of the left side and (X + cr) is a factor of the right side,  d must equal a 

to satisfy the equation.    By cancelling this factor in Eq.(C-6) and equating the remaining co- 

efficients we have 
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a = 2(jt — a 

2 2       2 
u + v = v   — acr = i>    +ff   — 2|ia (C-7) 

with 

d = <5 = a      . 

Equation (C-7) is the solution for d = Ö and there are some interesting points about it.   Note that 

only the sum u + v is specified so that there is a continuum of solutions for u and v with fixed 

d = 6 = a.    Also for the two transfer functions of most interest,  Butterworth and Chebyshev,  a 
2 

and fjL are related by a = Z\x so that by Eq.(C-7) the only solution is a = 0 and u + v = v  . 
12 13 

Feldtkeller,   Green,   and Wagner     mention this restricted solution in their investigations of 

Butterworth and Chebyshev filters, but their work, being restricted to these cases,  does not 

show that solutions for a > 0 are possible for other transfer functions,  i.e.,   cases where 2(i > a. 

In particular,  the maximally flat delay transfer function and the closely related Gaussian ap- 

proximation of Dishal    are of great current interest and have 2(JL > a.    On the other hand,  for 

2n < <r there is no realizable solution (a < 0),  and this is a situation that one gets into when the 

three-pole Butterworth or Chebyshev filter is predistorted (with d = 6). 

HI.   SOLUTION FOR n = 4 

The characteristic polynomial for n = 4 is 

Q4(M = (X + d4) (X + d2) (X + d3) (X + d4) + k*2(A + d3) (X + d4) 

+ k23(X + d4) (X + d4) + k34(x + d4) (X + d2) + k^k^     . 

By using the abbreviations and equating this to the desired polynomial we obtain 

Q4(X) = X4 + q3X3 + q2X2 + q±\ + qQ 

= (X + d) (X + a)2 (X + 6) + u(X + a) (X + 6) + v(X + d) (X + 6) 

+ w(X + d) (X + a) + uw      . (C-8) 

3 
Equating the coefficients of X   gives 

d + 2a + Ö = q3      . (C-9) 

By setting X = — d,  X = — a,  and then X = — Ö,  we obtain 

Q4 (-d) = u(a-d) (Ö -d) + uw (C-10) 

Q4(-a) = v(d-a) (6-a) + uw (C-ll) 

Q4(-6) = w(6 - a) (6 - d) + uw (C-12) 

respectively.    Solve Eq.(C-lO) for u 

Q4(-d) 

u= w-(d-a)(6-d) (C"13) 
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and put the result into Eq.(C-12) to obtain a quadratic equation for w, 

2 [Q4(-d)-Q (-6) 1 
w    +w[  (6-a)(S-d)    -C5-d)(d-a)J  + f^ Q4<-<) = 0      . (C-14) 

For selected values of a and d, Ö is determined from Eq.(C-9), then Eq.(C-14) can be solved 

for two values of w; u is obtained from Eq.(C-13), and v is obtained by subtracting Eq.(C-12) 

from (C-ll) and solving for v, 

Q4(-a)-Q4(-6) 6 _ d 
v-    (d-a)(6-a)     + »1=7     • (C-15) 

For n = 4,  Eqs.(C-9) and (C-13) through (C-15) constitute the solution to the design problem. 

For any given pair of positive values for a and d, there can be at most two realizable solutions; 

in some cases there will be only one, and in others there will be none. 

IV.   SOLUTION FOR n = 5 

The characteristic polynomial for n = 5 is 

Q5(M * U + d4) (X + d2) (X + d3) (A + d4) (X + dg) + k^x + d3) (X + d4) (X + dg) 

+ k2
2
3(X + d±) (X + d4) (X + d5) + k3

2
4(X + d^ (X + d2) (X + d&) 

+ k4
2
5(X + d4) (X + d2) (X + d3) + k^k^X + d5) 

+ k^k^X + d3) + k2
2
3k4

2
5(X + d4)      . 

By imposing uniform dissipation (d2 = d3 = d    = a) and using the abbreviations,  and then equating 

this to the desired polynomial we obtain 

Q5(X) = X5 + q4X4 + q3X3 + q2X2 + q±\ + q0 

= (X + d) (X + a)3 (X + 6) + u(X + a)2 (X + 6) + (v + w) (X + d) 

X (X + a) (X + 6) + x(X + d) (X + a)2 + uw(X + 6) 

+ ux(X + a) + vx(X + d)      . (C-16) 

Wagner's scheme for n = 3 and 4 does not work for n = 5, so here we will equate coefficients of 

like powers of X  in Eq.(C-16) and so obtain the following set of equations. 

q4 = d + 3a + ö (C-17) 

q3 = 3a(a + d+<5) + d<5+u + v + w + x (C-18) 

q2 = a3 + 3a2(d + 6) + 3adö + u(2a + Ö) + (v + w) (a + d + Ö) + x(2a + d) (C-19) 

qt = a3(d + 6) + 3a2dö + u(a2 + 2aö) + (v + w) [a(d + Ö) + dö] 

+ x(a    + 2ad) + uw + ux + vx (C-20) 

3 2 
qn = a dö + a (6u + dx) + adö(v + w) + öuw + aux + dvx      . (C-21) 
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Equation (C-17) determines ö  from a choice of a and d.    Then Eqs.(C-18) through (C-21) are 

four equations in four unknowns (u, v, w,  and x) which can easily be reduced to a pair of qua- 
2 

dratic equations in x and w.    In this pair of equations terms involving w   do not appear because 

of the assumed uniform dissipation.    This then allows the pair of quadratic equations to be re- 

duced to a cubic equation in x.    Without the assumption of uniform dissipation,  the resulting 

pair of equations reduces only to a quartic equation in w or x. 

The solution of the above set of equations is straightforward but tedious, and proceeds as 

follows.    Rewrite Eqs.(C-18) and (C-19) as 

R = q3 - 3a(d + a + ö)-dö = u+v + w + x (C-22) 

S = q2 - a3 - 3a2(d + 6) - 3adö = A^ + B^ + C^w + D^ (C-23) 

where 

A. = 2a + <5      ,       B. = Ci = a + d + ö      ,       Dd = 2a + d      . (C-24) 

Solve the pair (C-22) and (C-23) for u and v to obtain 

B1R- S + (C4 - B4) w + {DJ[ - B4) x 
U =   a"^  <C-25) 

and 

S-A,R-(C, - A,) w-(D, -A.) x 
v=   * VA ~ —      ' <C"26> B1-A1 

Now rewrite Eq. (C-20) as 

where 

T = q4 -a
3(d + ö)- 3a2dö 

= A2u + B-v + C2w + D„x + uw + ux + vx (C-27) 

2 
A- = a    + 2a<5 

B2 = C2 = a(d + ö) + do 

D2 = a2 + 2ad      . (C-28) 

By substituting for u and v from Eqs.(C-25) and (C-26) into Eq. (C-27) and combining terms, we 

obtain (after performing some algebra) 

2 /       D1~B1\ f A2(Dt-Bl) + B2(Al-Dl)l 

r B R-S + A2(C,-B ) + B2(A   -C,)i       C, - B       2 

S(B2 - A2) + R(A2B1 - A1B2) 

B1-A1 
(C-29) 
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This is one quadratic equation in w and x.   After deriving the second one both will be expressed 
in their final form. 

To obtain the second quadratic equation,   rewrite Eq. (C-21) as 

P = q   - a3d<5 Ho 

= A,u + B,v + C-w + D^x + <5uw + aux + dvx (C-30) X3"""3V T"3,Y T~3 

where 

A3 = a2(5 

B3 = C3 = ad<5 

D3 = a2d      . (C-31) 

By again substituting for u and v from Eqs.(C-25) and (C-26) but now into Eq.(C-30) and collect- 

ing like terms we obtain 

P=B^Ä-t  WDj-B^-^-A,)] 

+ B *XA    [«(Dj - Bj) - d(Ct - A4) + a(Ct - B^] 
1 1 

r S(d - a) + RlaBj - dA^ + A3(D± - B4) - B3(D1 - A^l 
[D3+ §7^ J 

I    3 Bl-A! J B1"A1      W 

+ x 

+ B   1A      IS(B3-A3) + RfAjB^AjBj)]      . (C-32) 
1 1 

This is the second quadratic equation in w and x, but,  in order to keep them general up to this 
point, we have not imposed the conditions in either that B. = C.,  B~ = C~,  and B3 = CL.    These 
conditions arise from the assumption of uniform dissipation (d_ = d3 = d4 = a), but if only d   * d4 

they are true also.    However,  we are interested in the former case only. 
By using the known quantities (A's,  B's,  C's,  and D's) from Eqs. (C-23),  (C-28),  and (C-31) 

in the quadratic equations (C-29) and (C-32),  the quadratics can be reduced to the following 

forms: 

a.x2 + c.wx + d.x + e.w + f. = 0 (C-33) 

and 

a2x   + c.wx + d.x + e,w + L = 0      . (C-34) 

Here the constants are 
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a. = 1      ,       c. = 1 + ±=± 
1 1 d — a 

di=_[R + (ö_a)(ö_d)]      \      6l = S ~ R(
d
a_+

a
d + g) 

fd = T + R(62 + a2 + aö) - S(ö + a) 

a2 = «-d-a     .      c2 = -|d+«^>, 

d2 = S + a(6-d) (6-a)- R(6 + a)      ,       e£ = ^-^ [R(a + d + «5) - S] 

f2 = aö [S- R(6 + a)]- P      . (C-35) 

Finally,  a cubic equation for x is obtained by solving Eq.(C-33) for w and substituting the re- 

sult into Eq. (C-34).    The result of this is 

2 
a. x    + d.x + f. 

and 

(a2cl ~ alc2) x3 + (cld2 " C2dl + ela2 ~ e2al} x2 

+ (clf2~ C2fl + eld2~e2dl) X+ (elf2~e2fl) = °      * (C-37) 

The coefficients in Eq. (C-37) are functions of d,  a (6 = q   — d — a),  and the coefficients of Q (X), 

so after choosing values of these parameters, three values of x are obtained from the solution 

of Eq. (C-37).    For each of these values of x,  w is obtained from Eq. (C-36),  and u and v are 

obtained from 

u = (a + d + 6)R-S-x(6-a) (c.38) 

and 

v=  S-(2a + 5)R-f x(6-d) _w (c_39) 
d — a 

which are from Eqs. (C-25) and (C-26),  respectively.    Thus we have the solution for n = 5. 

V.    MULTIPLE SOLUTIONS 

We have seen above that there is the possibility of more than one solution for the coupling 

coefficients (with fixed d,  a,  and 6) when n = 3,  4,  or 5.    For n = 3,  one of the solutions is 

singular in the sense that only the sum of u and v is dependent on the dissipation factors.    For 

n = 4 there can be two solutions,  and for n = 5 there can be three solutions.    This is the case 

for uniform dissipation. 

If the dissipation is arbitrarily distributed, then for n = 4 there still can be no more than 

two solutions (see Wagner    ).    But for n = 5 there can now be four solutions.    A term involving 
2 

w   now appears in Eqs.(C-33) and (C-34),  and the pair of simultaneous quadratic equations 

reduces to a quartic equation in x or w.    Since only positive values of u, v, w,  and x lead to 
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Fig. C-l.    Illustration of Takahasi-Weinberg transformation. 

190 



realizable networks,  a set of solutions with a negative or complex value for any of these param- 

eters is of no interest here. 

The appearance of multiple solutions is an interesting aspect of this problem,  and for loss- 

less Butterworth and Chebyshev filters it has been investigated by Green.     For n = 3 and d = Ö 
he did not observe the singular solution mentioned above.    For n = 4 he obtained a second solu- 
tion from a quadratic equation,  as here, which for a BU 4 filter is realizable for the ratio ö/d 

between \[~2 — 1 and sTz + 1.    Here we consider 6 ^. d only;  for Ö < d the network is reversed.   The 

BU 4 design curves show that the range for a realizable solution is in agreement with Green. 
For n = 5 Green finds the second and third solutions by considering the problem from the 

point of view of modern network synthesis [see Weinberg,   Chaps. 2 and 12],    In this approach one 

starts with a transmission coefficient which is a rational function of frequency and is the ratio 

of load power to power available from the source.    From this the reflection coefficient at the 

input of the terminated, lossless coupling network is determined, but it is not unique.    The poles 

of the reflection coefficient are unique,  but its zeros can be chosen in a number of ways.    For 
each different and allowable choice of zeros,  a different coupling network results,  but all have 

the same transmission coefficient.    Multiple solutions arise in this way from this approach. 
For a five-pole Butterworth or Chebyshev filter.  Green finds that there are four different 

realizable networks *    One of these is the normal solution for which all zeros of the reflection 

coefficient are in the left half \-plane,  and it is realizable for all positive values of Ö/d.    Two 
other solutions have certain ranges of realizability,  and for a Butterworth filter these are *7"5 ^ 

ö/d ^ 1/N/"5 and sj~5 + 2 ^ ö/d %,\[~5 - 2.    The results here agree with this.    For the last solution 
Green finds that d = ö, u = x, and v = w, which is identical to the normal solution for d = 6.   This 
is true but there is more to it.    This is a particular case of a singular solution that is similar 

to the one for n = 3 above.    For n = 5 the singular solution is Ö = d,  a = 0, u = x,  and v + w = 
constant,  and it can be shown that for Butterworth and Chebyshev filters,  Eqs.(C-17) through 
(C-21) lead to this solution. 

21 22 Takahasi     and Weinberg     have shown that if one takes the normal symmetrical circuit for 
n odd,  bisects it,  multiplies the impedance level of one half by a constant and then reconnects 
the two parts,  the resulting network has a transfer coefficient that is unchanged except for a 
constant factor and a reflection coefficient at its input whose zeros,  when taken in order of in- 
creasing magnitude of their real part,  alternate between the right and left half planes.    This is 
the arrangement of zeros that Green has in his fourth solution.    Figure C-l illustrates the effect 
of this transformation on the normal symmetrical circuits for n = 3 and 5.    The unprimed param- 

eters are those existing before the transformation occurs,  and the primed parameters result 
after the network has been bisected,  the impedance of the right half multiplied by z,  and the two 

parts reconnected.    Figures C-l(a) and (c) show the original networks,  and Figs. C-l(b) and (d) 

show the transformed networks.    For n = 3 we see that d = ö = d' = ö' and u + v = u' + v'.    For 

n = 5, d = 6 = d' = 6', u = x = u' = x' and v + w = v' + w'.   In general the design parameters have 
a symmetry that is unchanged by the transformation. 

A similar singular solution occurs for any odd value of n.    Thus,  for lossless Butterworth 
and Chebyshev filters with n = 3 and 5,  we see that the algebraic equations for the coupling 

* Actually there are eight different ways to choose the zeros of reflection coefficient, but only four of these lead 
to different networks.   The remaining four networks are the previous four turned end for end. 
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coefficients in Secs.C-H and -IV above lead to multiple solutions that correspond in a one-to-one 

manner with those obtained from modern network synthesis. 

For Bessel filters an examination of the design curves shows that for each value of d only- 

one solution is realizable (with the exception of BE 4 for 4.24^: d^: 5.0 and BE 5 for 6.8^: d^ 7.5 

where there are two realizable solutions).    Since there must obviously be several possible ar- 

rangements of zeros of the reflection coefficient, the network synthesis approach will yield a 

corresponding number of realizations.    So the question arises as to how these two results fit 

together.    The answer is that for a given n,   solutions derived from a given arrangement of re- 
flection coefficient zeros correspond to those obtained from a specific section of the total range 
of d.    By accounting for all the different arrangements of zeros, the range of the d axis from 

zero to d_      is covered.    For example,  if all zeros are restricted to the left half plane, the max r r        ' 
resulting continuum of networks has values of d that are between zero and something less than 

d        .    Other zero arrangements cover other adjoining sections of the complete range of d. 

For a particular transfer function,  the zeros of the reflection coefficient p(X) change with 

the termination ratio R./R .    The n zeros of p(X) are chosen from the 2n zeros of p(X) p(— X), i      s 
so by investigating the behavior of the real zeros of this latter function as the termination ratio 

changes we can determine the number of different networks possible.    This has been done for 

Bessel transfer functions of two, three,  four,  and five poles,  and the results are as follows. 

Let 0 = R/Rg. 

(1) BE 2.    For l/3 <: G ^ 3, p(X) p(-\) has all (four) real zeros, and (except 
for 0 = 1) two different networks are possible.    For 0=1,   p(XJ_p(-X) 
has a double zero at X = 0 and a pair of simple zeros at X = ±N/~3,   SO 
only one network is possible.    For 0 = l/3 or 3,  p(X) p(—X) has double 
zeros at X = ±^J 1.5.    For 0 < l/3 or > 3,  the zeros are complex and 
again only one network is possible.    By calculating from the data in 
Weinberg's tables for lowpass filters (Ref. 7,  p. 618) for all zeros of 
p(X) in the left half plane,  it is found that O^G^l and the corre- 
sponding range of d is 0^ d^: 0.634.    For the remainder of the range 
of d,   0.634^: d>£ 1.5,  the data given in Fig. 51 shows that 1 ^ 0 >£ 3, 
which is the second solution mentioned above,  apparently not observed 
by Weinberg. 

(2) BE 3.    For this transfer function,  p(X) p(— X) has two real and a quad- 
ruplet of complex zeros for all values of 0,   so (except for 0=1) there 
are two solutions.    For 0=1 the two real zeros occur as a double zero 
at X = 0,  thus only one solution is possible.    Reference to Weinberg's 
tables shows that for zeros in the left half plane with 0^ 0 «^ 1,  the 
range of d is 0 <: d ^ 0.7968,  and for alternating zeros with 1^9^», 
the range of d is d > 0.7968.    The upper limit on d  cannot be found 
from Weinberg's tables,  but the data presented in Figs. 76 through 79 
show that it is 2.322.    The figures show that for these two ranges of 
d,   0  is in agreement with Weinberg's result. 

(3) BE 4.    This case has more possibilities.    If 0.1723 >£ 0 ^ 5.802,  p(X) p(-X) 
has four real and a quadruplet of complex zeros,  so (except for the two 
special cases cited below) there are four solutions.    If 0 = 1, two of the 
real zeros coalesce into a double zero at X = 0;  thus only two solutions 
are possible.    If 0 = 0.1723 or 5.802, the four real zeros coalesce into 
two double zeros at X = ±2.544,  and only three solutions are possible. 
For 0 < 0.1723 or >5.802,  all zeros of p(X) p(-X) are complex and two 
solutions are possible.    Again by referring to Weinberg's tables we find 
that for zeros of p(X) in the left half plane and 0 ^ 0 <: 1,  the range of d 
is 0 ^ d ^ 0.9436.    For alternating zeros of p(X) and O^e^l,  the range 
of d is 4.24 4: d^: 5.76.    Obviously this second solution corresponds to 
the double solution given in Figs. 115 through 119 for 4.24 ^ d ^ 5.0,   and 
a few computations verify this.    Several computations over the remainder 
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of the d-range show that as d goes from 0.9436 to 4.24,  9 varies from 1 
to a maximum of 5.80 at d = 2.75 and then decreases to 1.   This range, 
therefore, gives the remaining two solutions predicted above. 

(4)   BE 5.    The situation in this case is relatively simple since p(X) p(—X) 
always has exactly two real zeros and two sets of quadruplet zeros. 
For 0 = 1, there is a double zero at X = 0 and two solutions are possible. 
Otherwise,  four solutions are possible.    For all zeros of p(X) in the left 
half plane, Weinberg's tables show that for 0 <: 9 ^ l.the range of d is 
0 ^ d <: 1.075.    This range of d,   shown in Figs. 162 through 167,  gives 
0 ^ 0 ^ 1, thus the two agree.    For alternating zeros Weinberg's data 
leads to values of d that fall into two parts of the realizable d range 
(for a lossless filter the range 3.60 < d < 4.65 is not realizable);  for 
9 = 8,  d = 3.08 and for 1/4 <: 9 ^ 1,  d is in the range 5.28 ^ d ^ 6.16. 
These design data have the following regions.    For 1.075 ^ d ^ 3.60, the 
9-range is 1 <: 9 ^ «.    For 4.65 <: d ^ 7.50,  the  9  range is 0^9^ 4.90; 
and for 6.80 ^ d ^ 7.50,  the 9-range is 0 ^ 9 ^ 0.204.    The latter range 
is actually a foldover of the previous range if it were extended above 
d = 7.50.    All these data are consistent with Weinberg's,  but his data 
are not extensive enough to permit a definition of the various regions, 
as was possible in the previous cases.    Weinberg's set of data for 9 = 8 
is not consistent with the remainder of his data for alternating zeros, 
so possibly this one design does not actually possess alternating zeros. 

Thus, for Bessel transfer functions it has been shown that certain ranges of d correspond 
to certain arrangements of the zeros of the reflection coefficient. Except for the few instances 

noted above, the correspondence is complete. 
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